
Controlled Kernel Launch for Dynamic Parallelism in GPUs

Xulong Tang1, Ashutosh Pattnaik1, Huaipan Jiang1, Onur Kayiran2, Adwait Jog3,

Sreepathi Pai4, Mohamed Ibrahim3, Mahmut T. Kandemir1, Chita R. Das1

1Pennsylvania State University 2Advanced Micro Devices, Inc.
3College of William and Mary 4 University of Texas at Austin

Email: {xzt102, ashutosh, hzj5142, kandemir, das}@cse.psu.edu, onur.kayiran@amd.com,

{adwait, maibrahim}@cs.wm.edu, sreepai@ices.utexas.edu

Abstract—Dynamic parallelism (DP) is a promising feature
for GPUs, which allows on-demand spawning of kernels on the
GPU without any CPU intervention. However, this feature has
two major drawbacks. First, the launching of GPU kernels can
incur significant performance penalties. Second, dynamically-
generated kernels are not always able to efficiently utilize
the GPU cores due to hardware-limits. To address these two
concerns cohesively, we propose SPAWN, a runtime frame-
work that controls the dynamically-generated kernels, thereby
directly reducing the associated launch overheads and queuing
latency. Moreover, it allows a better mix of dynamically-
generated and original (parent) kernels for the scheduler to
effectively hide the remaining overheads and improve the
utilization of the GPU resources. Our results show that, across
13 benchmarks, SPAWN achieves 69% and 57% speedup over
the flat (non-DP) implementation and baseline DP, respectively.

I. INTRODUCTION

Graphics Processing Units (GPUs) are known to provide

significantly high performance and energy efficiency for

a variety of applications from different domains, such as

medical science [32, 38], finance [25, 36], social media,

graphics [39], and computer vision [30]. The CUDA and

OpenCL programming models allow most of these applica-

tions to naturally map thread computations to regular data

structures. Such structured and load-balanced mapping of

the computational workload facilitates efficient harnessing

of the available compute throughput and memory bandwidth

in GPUs. However, such balanced mapping is not always

possible, especially for many emerging data-intensive appli-

cations that work on irregular and unstructured inputs (e.g.,

graphs [20, 21, 22] and adaptive meshes [19]). Consequently,

with continuously growing dataset sizes, it is becoming

increasingly harder to effectively map such applications to

GPUs and achieve high throughput with the desired energy

efficiency [2, 6, 14].

Dynamic Parallelism (DP), supported by both CUDA

[26] and OpenCL [4], is a promising feature that enables

superior portability of irregular applications on GPUs. It

provides applications with the flexibility to launch kernels

at the device (GPU) side. In other words, if some threads

are assigned higher computational workload than other

threads, these threads (parent threads) can offload their

workload by launching additional kernels (child kernels).

Such dynamically-generated kernels can expose additional

parallelism to GPU and potentially improve resource uti-

lization [26]. However, there are two primary drawbacks

of DP. First, launching of such child kernels is not free.

Aggressively launching too many child kernels can incur

significant performance penalties arising from the launch

overheads [44]. Second, as each GPU core can only run

a fixed number of Cooperative Thread-Arrays (CTAs1) [3]

and each GPU can execute a maximum number of concur-

rent kernels due to the hardware-limits [27], cores can be

severely underutilized in phases where only child kernels2

are executing. This leads to an increase in queuing latency

for the CTAs and kernels that cannot be scheduled due to

the hardware-limits.

To address the above two drawbacks, we develop a new

runtime framework, called SPAWN, underpinned by our

observation that a better workload distribution (partition-

ing) between the parent and child kernels can minimize

the exposed launch overheads and queuing latencies, while

maintaining enough parallelism to improve performance.

SPAWN mitigates the aforementioned issues by dynamically

controlling the launch of child kernels depending on the state

of the GPU. The framework estimates the amount of launch

overhead and queuing latency based on the current GPU

workload, and based on this, it makes judicious decisions

regarding child kernel launches. If the framework decides

not to launch child kernels for specific parent threads, the

overhead of launching child kernels is significantly reduced.

Also, as more computations are performed in the parent

threads, the number of pending child kernels and CTAs

reduces. Therefore, the queuing latency that is exposed

substantially reduces as well. We make the following con-

tributions in this paper:

• We conduct an in-depth characterization of DP applica-

tions and quantitatively study three parameters (factors) that

affect the performance of dynamic parallelism. We demon-

strate that the workload distribution (partitioning between

parent and child kernels) is the most significant factor that

affects the performance of a dynamic parallel application.

We observe that by tuning the workload distribution stati-

cally, one can achieve performance improvements ranging

from 4% to as much as 8.6×.

• We propose a novel runtime framework, called SPAWN,

which dynamically tunes the workload distribution between

the parent and the child kernels. SPAWN improves the

1A CTA is called as a “Workgroup” in OpenCL, and a “Thread-Block”
in CUDA.

2Most of the child kernels launched are lightweight, and the CTAs
associated with each child kernel can have very few warps.

applications’ resource utilization and minimizes the launch

overhead and queuing latency, and therefore, improves per-

formance.

• Experimental evaluations show that SPAWN significantly

improves the performance of the baseline dynamic paral-

lel execution with an average speedup of 57% across 13

benchmarks. It is also able to perform within 6% of the per-

formance achieved by the best offline workload distribution.

SPAWN outperforms the flat (non-DP) implementations by

69% on average, making dynamic parallelism a viable option

in GPUs.

II. BACKGROUND

In this section, we provide a brief background on dynamic

parallelism (DP) and critical factors that affect its behavior.

A. Irregular Applications and DP

To help understand the inefficiencies of irregular appli-

cations running on a GPU, let us consider Breadth-First-

Search (BFS) as an example. Assuming that each thread

represents a vertex, threads that traverse more edges (the

vertices that have high number of neighboring vertices)

require more computation. Figure 1 shows a snippet of

BFS threads. Threads T1, T5 and T7 have few edges

to traverse, while the threads T3 and T6 traverse more

edges. In such a scenario, when threads T1, T5 and T7

finish, a lot of compute resources are left underutilized.

Clearly, the overall performance is determined by threads T3

and T6. Many other irregular applications also suffer from

this workload imbalance, causing performance loss when

running on GPUs [6, 7, 12, 13].

T1 T2 T3 T4 T5 T6 T7 T8

A
m

o
u

n
t

o
f

w
o

rk

d
o

n
e

 b
y
 e

a
c

h
 t

h
re

a
d

Figure 1: Illustrating workload imbalance in BFS.

Dynamic Parallelism (DP) is a mechanism supported by

both CUDA [26] and OpenCL [4] that enables device-side

kernel launches. Figure 2a shows the high-level structure of

a conventional (non-DP) GPGPU application consisting of

threads, CTAs, and kernels. A kernel contains multiple CTAs

which can execute independently of each other. A CTA is

a batch of threads which can communicate and synchronize

with one another. The GPU hardware schedules threads into

the pipeline in groups called “warps”. As opposed to a

conventional GPU application, a DP application can launch

nested kernels from the device, as illustrated in Figure 2b.

Each parent kernel can launch one or more child kernels.

A child kernel itself can launch further child kernels and

exhibit a nested launching pattern. Synchronizations are

provided on device to guarantee the execution correctness.

Through child kernel launches, a DP application can exploit

more parallelism than its flat (non-DP) counterpart. This

feature is particularly useful for irregular applications, where

there can be large imbalances across the workloads assigned

to different threads.

Threads

Kernel KernelKernel

Application

CTA

Warps

CTACTA

WarpsWarps

… …

… …

(a) Conventional application.

Parent Kernel

Application

Parent

Kernel

Child
Kernel

Child
Kernel

Child
Kernel

Child
Kernel

Child
Kernel

Child
Kernel

Child
Kernel

ThreadsT2 T3

…
T1

… …

… …

Threads

(b) DP application.

Figure 2: High-level structures of conventional GPU appli-

cations and DP applications.

B. Properties of DP Applications

To trigger device kernels, a DP application is structured

differently from a conventional GPU application. Figure 3

is an example code fragment extracted from BFS3. In this

figure, (a) shows the code segment executing on the CPU

(host), which is agnostic of any specific DP implementation.

(b) shows the implementation of a parent kernel with the

ability to launch device side kernels (child kernels), and (c)

shows the application code for child kernels. For each child

kernel, there are three unique parameters: THRESHOLD,

(c grid, c cta), and c stream, shown in red in Figure 3b.

1. __global__ void parent (type *workload){

2. int pid = blockIdx.x*blockDim.x + threadIdx.x;

3. type *local_workload = workload[pid]; /**each parent threads pick up its workload*/

4. if (local_workload > THRESHOLD){

5. dim3 c_grid; dim3 c_cta;

6. cudaStream_t c_stream;

7. cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);

8. child<<< c_grid, c_cta, shmem, c_stream>>>(type *local_workload);}

9. else

10. while(local_workload){…}
11. …
12. cudaDeviceSynchronize(); /**waiting all children finishing*/

13. }

1. int main(int argc, char** argv){

2. …
3. dim3 p_grid; dim3 p_cta; /**parent kernel dimension*/

4. parent<<< p_grid, p_cta>>>(type *workload); /**parent kernel launch*/

5. …}

1. __global__ void child(*c_workload){

2. int cid = blockIdx.x*blockDim.x + threadIdx.x;

3. …
4. }

(a)

(c)

(b)

Figure 3: Structure of BFS using DP. (a) Host code segment.

(b) Parent kernel code segment. (c) Child kernel code

segment.

THRESHOLD: As explained previously, if a thread has a

lot of edges to traverse in BFS, spawning a new kernel

from that thread can increase parallelism. To achieve this, a

THRESHOLD is set for a parent thread to decide whether

to launch a child kernel or to traverse all the edges serially.

For example, if the THRESHOLD is set to 128, threads

3Although the same approach is applicable to both OpenCL and CUDA,
we show an implementation of BFS written in CUDA.

with more than 128 edges to traverse will launch a child

kernel to perform the work. Other threads with less than

128 neighboring vertices will perform the traversal in loops

(that is they will not create child kernels; instead, they

will do the work by themselves in an iterative fashion).

CUDA programming model allows applications to set any

value as a THRESHOLD: a large value will result in a

few heavyweight child kernels, whereas a small value will

lead to a large number of lightweight child kernels. Clearly,

setting a proper THRESHOLD value is a non-trivial task,

as the value selected needs to reduce workload imbalance

while avoiding significant overheads (Section II-C). Most

DP applications [24, 41, 44, 45] make use of a small

THRESHOLD value.

(c grid, c cta): Another important responsibility of the

parent thread is to specify the dimensions of its child kernel.

c grid specifies the grid dimension in terms of the number

of CTAs, and c cta specifies the number of threads per CTA.

c grid and c cta capture how the workload is parallelized

in a child kernel.

c stream: The last important responsibility of the parent

thread is to assign Software-managed Work Queue (SWQ)

IDs to child kernels. These SWQs are called c stream in

CUDA programming. Child kernels with the same SWQ

ID execute sequentially. In other words, all child kernels

with the same SWQ ID execute sequentially but those with

different SWQ IDs can potentially execute in parallel. An

application creates a SWQ ID for each child kernel by

initializing c stream before launching a child kernel (lines

6 and 7 in Figure 3b). If the application does not specify

c stream, each parent CTA assigns the same SWQ ID to

all its child kernels [28]. As a result, all the child kernels

launched from the same parent CTA execute sequentially.

C. Hardware Architecture

The necessary architectural support for DP is shown in

Figure 4. Similar to the traditional GPU applications (i.e.,

those without DP), a DP application starts running on the

host (1), and the parallel portion of the code is offloaded to

the GPU through a runtime API (2). A GPU kernel is tagged

with a SWQ ID (3), and pushed into Pending Kernel Pool

located in Grid Management Unit (GMU) (4). Kernels with

the same SWQ ID are mapped into a single hardware work

queue (HWQ). CTAs from a chosen HWQ’s head-of-the-line

kernel are dispatched to the GPU multiprocessor units (5).

The number of HWQs is 32 according to publicly-available

documents from NVIDIA [27]. Therefore, the maximum

number of kernels that can concurrently execute on the

GPU is 32. Note that a CTA needs to wait in GMU if its

required resources are not available or the hardware-limits

are reached. The amount of time spent in GMU is called

queuing latency.

Child kernels are launched through by invoking the re-

lated Runtime API function calls (6). These API functions

prepare the child kernel parameters and push the kernel

Application

Host

(CPU)

1

CU/SMX

L1/Shared memory

Wavefront/

Warp Scheduler

Register file

Core

Stream Queue Management (SQM)

K1

K2

K3

K4

K5

K6

K7

K8

K9

Software

Work

Queues

Grid Management Unit (GMU)

Pending

Kernel Pool

32

Hardware

Work

Queues

Core Core

CU/SMX

SWQ 1 SWQ 2 SWQ 3

SPAWN

7

8

S
o

ft
w

a
re

 S
u

p
p

o
rt

H
a

rd
w

a
re

 S
u

p
p

o
rt

CTA scheduler

CU/SMX

L2 Cache

Interconnect

2

3

4

5

6
CU/SMX CU/SMX

Runtime APIs

Device Runtime APIs

Figure 4: Hardware architecture realizing DP.

into Pending Kernel Pool in GMU. Note that these API

calls are asynchronous [28], and allow the parent thread to

continue its execution without waiting for the child kernel to

be launched. The parent thread stops and waits for its child

kernels to finish only when it finishes its execution or reaches

an explicit synchronization point. If an entire parent CTA

is waiting for synchronization, it relinquishes the occupied

GPU resources so that other CTAs can be scheduled. It is

important to emphasize that full memory consistency is only

guaranteed at launching point and synchronization point; DP

provides weak memory consistency between the launching

point and synchronization point [28].

Launching a child kernel is not free, and entails per-

formance overheads. The time spent on invoking the API

(6) and pushing the child kernel into Pending Kernel Pool

(3 + 4) is called launch overhead. This launch overhead

can potentially be hidden by overlapping the execution of

other available warps on SMXs. However, in cases where

a majority of running parent threads launch child kernels

within a short period of time, such high number of API calls

cannot be serviced simultaneously. As a result, the resulting

launch overheads can degrade performance.

III. APPLICATION CHARACTERIZATION AND

MOTIVATION

In this section, we first characterize all three parameters

mentioned above using our benchmarks. We observe that

THRESHOLD is the most significant contributor towards

performance since it directly controls the workload distribu-

tion between the parent and child kernels. We next show how

this workload distribution can affect: 1) the launch overheads

and queuing latency, and 2) the GPU utilization.

A. Benchmarks, Metrics, and Observations

1) Benchmarks and Metrics: We use 8 applications

and generate 13 benchmarks (each benchmark is an

BFS-citation

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

1% 5% 13% 28% 35% 53% 85%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

BFS-graph500

0

0.4

0.8

1.2

1.6

2

0

0.4

0.8

1.2

1.6

1% 5% 10% 33% 58% 77% 91%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

SSSP-citation

0

0.5

1

1.5

0

0.5

1

1.5

1% 5% 13% 28% 35% 53% 85%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

SSSP-graph500

0

0.4

0.8

1.2

1.6

0

1

2

3

4

2% 10% 33% 58% 62% 77% 91%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

AMR

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5

4% 8% 10% 15% 30% 50% 80%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

JOIN-uniform

0

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0% 90% 95%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

JOIN-gaussian

0

2

4

6

8

0

0.2

0.4

0.6

0.8

1

1.2

3% 10% 50% 78% 95%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

Mandel

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

2.5

7% 20% 28% 64% 78%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

GC-citation

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

4% 13% 20% 40%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

GC-graph500

0

0.4

0.8

1.2

1.6

0

0.2

0.4

0.6

0.8

1

1.2

18% 31% 46% 73%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

MM-small

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5

3

1% 3% 25% 31% 49% 74% 89%
S

p
e

e
d

u
p

 (
H

a
rd

w
a

re
)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

MM-large

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

3.5

1% 3% 25% 31% 49% 74% 89%

S
p

e
e

d
u

p
 (

H
a

rd
w

a
re

)

S
p

e
e

d
u

p
 (

S
im

u
la

to
r)

Percentage of Workload

NVIDIA K20m GPU

SA-thaliana

0
1
2
3
4
5
6
7
8
9
10

0
1
2
3
4
5
6
7
8
9

10

2% 5% 13% 32% 60% 83% 98%

S
p

e
e
d

u
p

 (
H

a
rd

w
a
re

)

S
p

e
e
d

u
p

 (
S

im
u

la
to

r)

Percentage of Workload

Simulator NVIDIA K20m GPU

Figure 5: Effect of parent-child workload distribution on overall performance. We calculate the speedup in simulator (bars)

and hardware (dashed curve) separately, by normalizing performance to the performance of running application’s flat (non-

DP) implementation on simulator and hardware, respectively. The x-axis shows the percentage of workload offloaded by

launching child kernels.

<application, input> pair) by varying input sets of a few

applications. The applications along with the benchmarks

are listed in Table I. MM and SA are two applications written

by our group. In MM, each parent thread multiplies one

row (or couples of rows) of the multiplicand matrix with

an entire multiplier matrix. In the DP version, a parent

thread launches a child kernel and each thread of that child

kernel picks up one column from the multiplier matrix to

perform multiplication. In SA, all the reads 4 are divided into

sections. Each parent thread handles one section of reads.

For each read, there are several candidate locations in the

reference index to match. The number of candidate locations

varies among reads. In the DP version of this application, a

thread launches a child kernel for a read if it has too many

candidate locations. All the applications have a flat variant

that does not use dynamic parallelism.

Table I: List of benchmarks.

Applications Input Sets Benchmarks

Adaptive Mesh Combustion AMR

Refinement [44] Simulation [18]

Breadth-First Citation Network [35] BFS-citation

Search [22, 44] Graph 500 [35] BFS-graph500

Single Source Shortest Citation Network [35] SSSP-citation

Path [6, 44] Graph 500 [35] SSSP-graph500

Relational Join [10, 44] Uniform Data JOIN-uniform

Gaussian Data JOIN-gaussian

Graph Coloring [23] Citation Network [35] GC-citation

Graph 500 [35] GC-graph500

Mandelbrot Set N/A Mandel

Matrix Small sparse matrix MM-small

Multiplication Large sparse matrix MM-large

Sequence Arabidopsis SA-thaliana

Alignment [9] Thaliana [1]

We measure performance using speedup, which is the

ratio of the execution time of the flat (non-DP) implemen-

4A read is a substring of genome.

tation to the execution time of the DP implementation. We

use geometric mean to represent the average speedup across

all benchmarks. We also define resource utilization as the

maximum of the register file utilization, shared memory

utilization, and GPU compute unit (SMXs) utilization.

2) Observations: For our 13 benchmarks (Table I), we

study the performance impact of varying the workload

distribution ratio between the parent and child kernels.

Each plot in Figure 5 represents one benchmark and the

percentage numbers on x-axis represent the amount of

workload offloaded to child kernels. Note that this analysis is

static (off-line), performed by changing THRESHOLD in the

application code. It is important to emphasize that offloading

100 percent of a workload to child kernels is also possible.

However, this would lead to intra-warp inefficiency because

a very small workload might not use all the threads in a

warp.

We show the results obtained from both the simulator

and a real hardware in Figure 5. The yellow bars represent

the performance results obtained using a modified version

of GPGPU-Sim [5, 42], and the dashed lines represent the

performance results obtained using NVIDIA Tesla K20m

GPU. We use NVIDIA CUDA profiler [29] to profile the

performance on hardware. The performance trends observed

when using the simulator and the real hardware are similar.

All the other observations and results provided in the rest

of this paper are based on simulation results. From this

analysis, one can make four major observations:

Observation 1: The preferred workload distribution ratio

for each benchmark is different. Further, a given application

(e.g., BFS) can have different preferred workload distribu-

tion ratios for different inputs.

Observation 2: Two of the benchmarks (Join-uniform

0

0.2

0.4

0.6

0.8

1

0

50

100

150

200

R
e

s
o

u
rc

e
 U

ti
li

z
a

ti
o

n

C
o

n
c

u
rr

e
n

t
C

T
A

s

Time

Child Concurrent CTAs Parent Concurrent CTAs

Total Concurrent CTAs Resource Utilization

ii

i

iii

iv

Figure 6: CTA concurrency and resource utilization over

the course of execution of BFS-graph500 Baseline-DP.

The maximum number of concurrently-running CTAs across

all SMXs is 208. The total number of concurrently-running

CTAs is the sum of the number of concurrent-executing child

and parent CTAs.

and AMR) prefer processing the majority of work within

the parent threads instead of launching child kernels.

Join-uniform’s input is regular, and the workload is

balanced across all parent threads, leading to its preference

of performing the workload within parent threads without

launching child kernels. On the other hand, AMR launches

nested child kernels and it is bottlenecked with the con-

current CTA limitation, and thus it also prefers to perform

computations within the parent threads.

Observation 3: Three of the benchmarks MM-small,

MM-large, and SA-thaliana prefer offloading a sig-

nificant amount of workload to child kernels. In MM, both

inputs are sparse matrices, resulting in severe workload im-

balance among threads. Similarly, the number of candidate

positions in SA varies among different reads, leading to

workload imbalance among threads. Additionally, both MM

and SA launch a small number of heavyweight child kernels,

which means that the launch overheads have already been

effectively hidden by the interleaved execution.

Observation 4: All the other benchmarks gain sig-

nificant (8.6× in SA-thaliana) to modest (4% in

Join-Gaussian) performance improvements by offload-

ing parts of their computational workloads to child kernels,

except GC-citation. In GC-citation, the number of

child kernels is few (< 2300 child kernels), and the amount

of work in a parent is still significant to hide the launch

overheads, leading to little variance between processing in

the parent kernel and offloading to the child kernels.

To understand how a workload distribution impacts the

GPU core utilization, consider Figure 6 which shows an

execution snippet of BFS-graph500. The figure plots

the number of concurrently-executing CTAs along with the

resource utilization (as defined in Section III-A1). Initially,

until cycle i , only the parent CTAs are executing. The child

CTAs start their executions beyond that point, increasing

resource utilization until the maximum concurrent CTAs is

reached (between i and iii). Due to this hardware-imposed

limit, even with enough available hardware resources, the

GPU cannot run more CTAs. Starting from time ii , the

parent CTAs start to finish and relinquish resources, allowing

more child CTAs to be scheduled. The resource utilization

keeps decreasing because the child CTAs usually tend to

be lightweight, not requiring as much hardware resources

as the parent CTAs [44]. The number of concurrent child

CTAs fluctuates between iii and iv because of two reasons.

First, apart from the concurrent CTA limitation, there is

a concurrent kernel limitation due to the limited number

of HWQs. As a result, a large number of child kernels

with a few CTAs per kernel will hit the concurrent kernel

limit instead of the concurrent CTA limit, leading to a few

concurrent child CTAs. Second, the trailing child kernels

have long latencies before they can start executing, resulting

in system idleness due to launch overheads. We show in

Section IV how an intelligent workload balance can allow a

better GPU core occupancy, thereby improving the overall

GPU utilization.

(c grid, c cta): Figure 7 shows the performance variation

with varying child CTA dimensions. The speedup is nor-

malized to the CTA dimension with 32 threads. We observe

from this plot that only certain applications such as AMR

and SSSP-graph500 are sensitive to the CTA dimensions.

AMR is bottlenecked by the hardware CTA concurrency

limit under small CTA dimensions. Larger CTA dimensions

prevent AMR from reaching this CTA concurrency limit.

SSSP-graph500 prefers smaller child CTA dimensions,

because the resource requirement for each of the child CTAs

is high due to the unavailability of hardware threads. As

a result, in SSSP-graph500, having smaller CTAs helps

the CTA scheduler allocate more CTAs on SMXs, as the

resource requirement is low compared to a larger-sized CTA.

0

0.3

0.6

0.9

1.2

1.5

1.8

S
p

e
e
d

u
p

CTA-64 CTA-128 CTA-256

Figure 7: Performance sensitivity to different CTA sizes (64,

128, and 256 threads/CTA).

c stream: We also studied the impact of the number of

SWQs on performance. As discussed in Section II-B, child

kernels can be assigned with 1) a unique SWQ id for each

child kernel, or 2) the same SWQ id for all child kernels

being generated by a given parent CTA. The former enables

more kernels to run concurrently, whereas the latter has

fewer SWQs to manage. We compare these two mechanisms

in Figure 8, and observe that assigning each child kernel

a unique SWQ id always performs better. This is mainly

because, in the second mechanism, a sequential execution of

kernels limits concurrency. Therefore, we choose to assign

each child kernel a unique SWQ id in all of the experiments

presented in the rest of this paper.

0

1

2

3
S

p
e

e
d

u
p

4.1

Figure 8: Performance of one SWQ per child kernel, nor-

malized to performance of one SWQ per parent CTA.

In conclusion, our characterization shows that varying

the workload distribution ratio (THRESHOLD) results in

significant performance impact for our applications, while

the other parameters do not affect most of the applications.

B. Potential Benefits of Parent-Child Workload Distribution

We now show the potential benefits of different workload

distributions (partitioning) between the parent and child

kernels with the help of an example. For the convenience

of explanation, we assume there are 3 HWQs. In Figure 9,

I shows the execution time-line of the baseline DP scenario.

At the very beginning, the parent kernel starts its execution,

and there are multiple parent CTAs that are being executed

concurrently. At some point during the execution, the local

workload of some threads is found to be greater than

THRESHOLD. These threads launch child kernels while the

other threads proceed normally. As discussed in Section II-C,

these child kernels need to wait for a period of time before

they can start executing due to the launch overhead (A).

We further assume that each child kernel is associated with

one unique SWQ id. However, since the number of HWQs

is 3, there can be only 2 child kernels running concurrently

along with the parent kernel. The remaining kernels have

to wait and this results in increased queuing latencies. In

I , most of the parent threads launch child kernels, and

consequently, the amount of computation performed by the

parent kernel is less. As a result, most parent threads finish

their executions faster and the GPU is under-utilized as child

kernels are not able to start executing right away. There

are two major shortcomings in this baseline DP execution.

First, it cannot hide all the launch overheads. Second, due to

the large number of child kernels in the queue and limited

concurrency (number of HWQs) of the GPU hardware, the

queuing latency of the child kernels can be quite high,

leading to performance degradation.

Figure 9 II shows a possible solution to mitigate these

performance penalties. By limiting the workload offloaded

to child kernels, first, the overall number of child kernels

is reduced. This results in few and sparse child launching

API calls and consequently reduces the launch overhead. In

addition, more computation is performed within the parent

threads. As a result, the parent thread execution is extended

and can hide the launch overhead and queuing latency more

effectively. A better workload balance, although not optimal,

is achieved in II . It saves us B execution cycles.

Parent Kernel

Child Kernel

Parent Kernel

Time

Parent Kernel Parent Kernel Waiting

A

Launch Overhead

B

HWQ

CTAparent

C

HWQ

Parent Kernel

Launch Overhead

Launch Overhead

CTAparent

HWQ

HWQ

HWQ

HWQ

Figure 9: Time-line graph showing the benefits of balanced

workload distribution between the parent and child kernels.

Obviously, in the best case scenario, the launch overhead

is completely hidden while all necessary child kernels are

launched to improve parallelism. Queuing latency also re-

duces since there are fewer pending kernels. III depicts such

a case. Further execution time savings can be achieved by

balancing the workload between the parent and child kernels

if more concurrency is available. Such an approach takes

full advantage of the available parallelism in a workload-

balanced fashion, resulting in additional savings of C cycles.

In summary, the workload distribution (partitioning) be-

tween the parent and child kernels is the most important

parameter, and has a significant performance impact on

DP applications. Since the preferred ratio varies among

different applications (even with different inputs for the

same application), setting a proper ratio is non-trivial and

requires the knowledge of GPU runtime state. This, in turn,

motivates the need for a dynamic mechanism that can control

the workload distribution ratio between the parent and child

kernels on the fly . To this end, we propose our runtime

framework SPAWN.

IV. SPAWN: DYNAMIC LAUNCH CONTROL

OF CHILD KERNELS

In this section, we describe our proposed approach to

determine a balanced workload distribution between the

parent and child kernels.

Overview: To achieve a balanced workload distribution

between the parent and child kernels, we propose a runtime

framework called SPAWN, oriented towards improving the

GPU performance. The goal of SPAWN is to 1) improve

GPU occupancy, 2) prevent the application from reaching the

hardware-limits, and 3) dynamically control the performance

trade-offs between increasing parallelism (launching child

kernels) and incurring overheads.

Challenges: In order to effectively achieve a balanced work-

load distribution between the parent and child kernels, we

should be able to estimate how beneficial it will be to launch

a new child kernel, as opposed to performing the specified

computation within the parent thread. To better explain this,

let us consider the example depicted in Figure 10, which

shows the child kernel launches from three different parent

threads (PTi).

Time

PT1

PT2

C1

C3

PT3

C2

Waiting

Time

PT1

PT2

C1

C3

PT3

C2

Waiting

t1 t2 t3

t7

t5 t6

S
c

e
n

a
ri

o
 I

S
c

e
n

a
ri

o
 I

I

t4

Figure 10: Illustrating the advantages and importance of

knowing the runtime status while a parent thread is launch-

ing a child kernel.

At time t1, two parent threads PT1 and PT2 launch their

respective child kernels (C1 and C2), and these child kernels

start their executions at time t3. PT3 makes a decision

whether to launch C3 or not at t2. if C3 is launched, it cannot

start its execution immediately due to the launch overhead.

Let us assume that C3 is launched and can start its execution

at time t4. Based on the hardware requirements of C1 and C2

at time t4, one can have two different scenarios. In Scenario

I, C1 and C2 occupy most of the GPU resources for a long

duration. In such a case, child kernel C3 needs to wait for

a long time for GPU resources to be freed up so that it can

start its execution. Finally, C3 finishes its execution at t7.

However, if PT3 performs the computations itself without

launching C3 at time t2, it finishes its execution at t6,

resulting in shorter execution time than the case where PT3

launches C3. On the other hand, as illustrated in Scenario

II, C1 and C2 could be short running kernels and occupy

resources for a short period of time. This would cause C3

to start its execution earlier and thus, finish faster at t5,

where t5 < t6. Therefore, in this second scenario, launching

a child kernel for PT3 would be beneficial for improving

performance.

A. The SPAWN Model

There are two major components of our SPAWN frame-

work: Child CTA Queuing System (CCQS) and SPAWN

Controller. As shown in Figure 11, CCQS monitors the

launched child kernels and provides feedback information to

the SPAWN controller enabling the latter to make a decision

about child kernel launchings.

Child CTA Queuing System (CCQS): CCQS models the

Grid Management Unit (GMU) as a “queue” and the SMXs

as a server. The launch of child kernels generates CTAs,

which act as “jobs” for CCQS5. As shown in Figure 11,

5We use CTA granularity for our model because of two reasons: 1)
each CTA execution is independent, and 2) CTAs cannot be preempted,
or migrated to another core [28].

the arrival rate of the jobs is denoted by λ. It conveys the

spawning rate of CTAs from the new child kernels into

the system. The throughput of CCQS is denoted by T . It

conveys the rate of processing the child kernel CTAs on

the GPU. Let n be the number of total jobs in CCQS,

including both the running and pending child CTAs. Since

CCQS works in a FCFS fashion, newly-launched child CTAs

need to wait for the previous CTAs to be drained from

CCQS and relinquish the occupied resources. Note that, if

the child CTA arrival rate (λ) is greater than the throughput

(T), CCQS accumulates more child CTAs, leading to long

queuing latencies for newly-launched kernels.

SPAWN

Controller
SMXs

Child CTA Queuing System (CCQS)
Spawn
Childs

Compute in Parent Thread

GMU � ��
Figure 11: High-level view of SPAWN.

The SPAWN Controller: At each kernel launch call,

SPAWN controller is invoked, and it is responsible for

estimating the benefit of launching that child kernel, and

making a decision on launching or not. For each child

kernel, there are three time components involved: 1) launch

overhead, 2) queuing latency, and 3) execution time. In our

SPAWN framework, the launch overhead is modeled as the

time to push child CTAs from SPAWN controller to CCQS.

Note that we separate the launch overhead from CCQS, as

CCQS tracks the child kernel CTAs only after they are

pushed into GMU. Queuing latency is modeled in CCQS

as queuing time, and is calculated by examining throughput

(T) and the number of jobs (n) residing in CCQS. Execution

time on cores is modeled as the service time in CCQS, and

is calculated using throughput (T) and the number of CTAs

(x) that the new kernel has. Therefore, we can approximate

the time it takes for a new child kernel to finish its assigned

workload using Equation 1,

tchild ≈ Launch overhead +
n

T
+

x

T
(1)

where:

T =
Average Number of Concurrent CTAs

Average Child CTA Execution Time
and

x is the number of CTAs in the new kernel.

Similarly, Equation 2 estimates the time needed by the

parent thread to perform the computations within itself

rather than performing them in a child kernel. Generally,

the parent thread will perform the computation in an iterative

fashion. Each iteration time is approximately similar to the

counterpart’s child warp execution time.

tparent ≈ Workload× twarp (2)

where:

twarp is Average Child Warp Execution Time

By comparing the results of these two equations, our

SPAWN controller chooses the option with the lower es-

timated execution time. Algorithm 1 gives the working of

SPAWN in detail. Initially, it decides to launch child kernels

because there is no CTAs in CCQS (line 2 to 3). Line 5

and line 6 represent Equations 1 and 2, respectively. Note

that, there is a maximum queue size in CCQS, which we

set to 65,536 in our implementation, based on the Kepler

architecture [27].

Algorithm 1 SPAWN Controller

INPUT:

n : Total child CTAs in CCQS.

x : number of CTAs in new child kernel.

workload : Workload hold by parent thread.

toverhead : Child launch overhead.

tcta : Average child CTA execution time.

twarp : Average child warp execution time.

ncon : Average number of concurrent CTAs.

tchild : Estimated child kernel execution time.

tparent : Estimated parent thread execution time.

1: Initialization

2: if tcta = 0 then

3: Spawn child kernel

4: end if

5: tchild ← toverhead + (x + n)× tcta/ncon

6: tparent ← workload× twarp

7: if tchild 6 tparent and n + x 6 max queue size then

8: n ← n + x
9: Spawning Child Kernel

10: else

11: Process computation in parent thread

12: end if

Accuracy: SPAWN controller uses the historical average

child CTA execution time to estimate the execution time

of newly-launched child CTAs. In other words, SPAWN

might make wrong decisions and lose opportunities if the

execution time has a big variance among most child CTAs.

However, this does not happen in most DP applications

because: 1) all child CTAs share the same instructions and

thus require similar hardware resources, and 2) child kernels

are essentially lightweight and contain lightweight CTAs.

Therefore, it is unlikely that the child CTA execution times

significantly vary. In Figure 12, we show the PDF of child

CTA execution time from four of our benchmarks. As one

can see, 95% of the child CTAs (80% in SSSP-graph500)

have their execution time within 10% of the average child

CTA execution time. Because of this characteristic, even

though SPAWN needs time to get tcta converge to the

average at the beginning of execution (within 5% of total

execution), it can accurately estimate most child kernel

execution times and make proper decisions for the remaining

execution of the program.

B. Implementation Details

Figure 13 shows the high-level implementation of our

SPAWN runtime framework. This implementation has two

parts: 1) a source-to-source translator, and 2) an extension

to the CUDA runtime that acts as a wrapper for the SPAWN

controller function.

Source-to-Source Translator: Figure 14 shows the trans-

lated source code. First, the declaration of the kernel envi-

ronment variables are moved outside the condition block,

and the CUDA device launch function is used as the

0%

2%

4%

6%

8%

10%

12%

-20% -10% AVG +10% +20%

P
D

F

MM-small

-20% -10% AVG +10% +20%
0%

5%

10%

15%

20%

25%

30%

-20% -10% AVG +10% +20%

P
D

F

Seq-small

0%

10%

20%

30%

40%

-20% -10% AVG +10
%

+20
%

P
D

F

BFS-graph500

-20% -10% AVG +10% +20%
0%

4%

8%

12%

16%

-
20%

-
10%

AVG +10
%

+20
%

P
D

F

SSSP-graph500

-20% -10% AVG +10% +20%

Figure 12: Child kernel CTA execution time. Each green

point represents one child CTA. The red line shows the

average execution of overall child CTAs.

Kernel

Launch

Source to Source
Translation

CPU
Execution

CUDA Runtime

SPAWN

C
U

D
A

P
ro

g
ra

m

Figure 13: High-level view of SPAWN implementation.

condition clause. The API function call returns with a flag

of “success” when the child kernel is launched; otherwise,

it returns with “fail” and the workload will be computed

by the parent thread. Second, the child kernel launch needs

to integrate the local workload parameter into the CUDA

runtime call to facilitate the estimation of the execution times

in the SPAWN controller. This relieves the programmer from

specifying any value of THRESHOLD.

1. __global__ void parent (type *workload){

2. type *local_workload = workload[pid]; //each parent threads pick up its workload

3. dim3 c_grid; dim3 c_cta;

4. cudaStream_t c_stream;

5. cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);

6. if (child<<< c_grid, c_cta, shmem, c_stream, local_workload>>>(type

*local_workload)){ … }
7. else

8. while(local_workload){…}
9. …
10. cudaDeviceSynchronize(); //waiting all children finishing.

11. }

Figure 14: Translated version of the source given in Fig-

ure 3b.

CUDA Runtime Extension: We extend the CUDA Run-

time, specifically the device kernel launch API call to

integrate the SPAWN controller. At runtime, when the child

kernel launch API is executed, SPAWN makes the decision

regarding the launch of a child kernel by examining CCQS.

Monitored Metrics: We monitor the following metrics:

1) n, 2) tcta, 3) ncon and 4) twarp. As mentioned in

Section IV-A, we need n and T to calculate the child kernel

execution time. In order to compute T , we use two proxy

metrics: i) tcta, average child CTA execution time and ii)

ncon, average number of concurrent child CTAs. Similarly,

we monitor twarp, average child warp execution time, to

estimate the parent thread execution time. At the start of

an application execution, all the metrics are initialized to

0. n is incremented/decremented in the SPAWN controller

whenever a child CTA either enters or leaves CCQS. tcta
is updated only when a CTA finishes its execution and

leaves CCQS. We compute ncon over a window of 1024

cycles. At every cycle, we add the number of concurrently

executing child CTAs to ncon and, at the end of the window,

we bit-shift ncon by 10 bits to the right to obtain the

average number of the concurrently-running child CTAs in

the window. This average number is then used over the next

window until a new value of ncon is calculated. Similarly,

twarp is also calculated in a windowed fashion.

Hardware Overheads: The main hardware overheads in-

volve storing and updating the monitored metrics and com-

puting the execution time. As shown in Figure 4, GMU is

extended with the SPAWN logic (8). It requires a 416 bytes

table to keep track of each running child CTA’s execution

time6. It also requires one 16-bit register to hold n, two 16-

bit adders and one shift register to calculate the estimated

execution time. When a child CTA finishes its execution, it

updates the related metrics located in GMU. Since the cores

and GMU already communicate every cycle, this does not

cause any extra communication overhead. The child kernel

launch API communicates with SPAWN (7) and returns

the decision immediately, as the kernel launch API call is

asynchronous.

V. EXPERIMENTAL EVALUATION

A. Simulated System

We use a modified version of the cycle-accurate GPGPU-

Sim v3.2.2 [5] that is able to simulate concurrent ker-

nel execution and support dynamic parallelism. Table II

provides the configuration details of the simulated system.

The simulated system is modeled with 32 Hardware Work

Queues (HWQs), therefore, limiting the maximum number

of concurrently executing kernels to 32. In our simulation

framework, we modify the GPU runtime to support SPAWN

as described in Section IV-B.

Table II: GPU configuration parameters.
SMX 13 SMXs, 1400MHz, 5-Stage Pipeline

Resources per 48KB Shared Memory, 64KB Register File,

SMX Max.2048 threads (64 warps, 32 threads/warp)

cache per 16KB 4-way L1 D-cache, 12KB 24-way

SMX Texture cache, 8KB 2-way Constant cache,

2KB 4-way L1 I-cache, 128B cacheline .

L2 Unified 128KB/Memory Partition, 1536KB Total Size,

cache 128B cacheline, 8-way associativity

Scheduler Greedy-Then-Oldest (GTO) [34] dual warp

scheduler, Round-Robin (RR) CTA scheduler

Concurrency 16 CTAs/SMX, 32 HWQs across all SMXs

Interconnect 1 crossbar/direction (13 SMXs, 6 MCs)

1.4GHz, islip VC & Switch Allocators

DRAM Model 2 Memory Partition/MC, 6 MCs,

FR-FCFS (128 Request Queue Size/MC)

Child Kernel Latency = Ax + b where A is 1721

Launch cycles, b is 20210 cycles, x is number

Overhead of child kernels launched per warp [42]

B. Experimental Results

We study the effects of utilizing our SPAWN mechanism

across 13 benchmarks (Table I). All the speedup results have

been normalized to the execution of a flat (non-DP) variant

6The table includes 208 entries, and each entry is a 16-bit cycle counter.

0

1

2

3

4

5

S
p

e
e
d

u
p

Baseline-DP Offline-Search SPAWN

Figure 15: Speedup over the flat (non-DP) implementation.

of each benchmark. For each benchmark, we analyze the

results for three different schemes: 1) the baseline dynamic

parallelism execution (Baseline-DP), 2) the best workload

distribution ratio7 (Offline-Search), and 3) SPAWN. Fig-

ure 15 shows the speedups obtained when using three

different schemes. Across the 13 benchmarks evaluated, we

observe an average speedup of 69% and 57% compared to

the flat variant and Baseline-DP execution, respectively. That

is, although Baseline-DP performs better than flat version,

our SPAWN significantly outperforms both flat and Baseline-

DP. For the Offline-Search execution with the best workload

distribution ratio, we obtain performance improvement of

61% over Baseline-DP execution.

We make three important observations based on these

results. First, SPAWN is able to match the speedup

obtained by Offline-Search, irrespective of whether the

benchmark prefers launching child kernels or performing

the computations within the parent thread. For example,

SA-large has high performance when offloading a sig-

nificant amount of work to the child kernels, whereas

AMR prefers processing within the parent threads. SPAWN

successfully captures the characteristics of these two dis-

similar benchmarks. Note that, SPAWN is able to achieve

within 4% of the Offline-Search’s performance. Second,

for three benchmarks, BFS-graph500, GC-graph500,

MM-small, SPAWN performs better than Offline-Search.

The slight performance improvement in SPAWN is due to

Offline-Search being agnostic to the GPU hardware state.

SPAWN is able to dynamically tune the workload distribu-

tion over the course of execution, taking into consideration

the current state of the GPU, and also, it is able to control

workload distribution decisions on a per kernel basis rather

than using a statically fixed THRESHOLD value. Third,

SPAWN under-performs for SSSP-graph500 compared

to Offline-Search and is similar to performance of Baseline-

DP. This is because, for the monitored metrics to be use-

ful to SPAWN, some child CTAs need to finish for the

metrics to be updated to an accurate value. However, in

SSSP-graph500, by the time the first child kernel finishes

and updates the metrics, SPAWN had already made incorrect

decisions and launched all the child kernels at this phase of

execution.

Figure 16 shows the achieved occupancy across all SMXs.

7We pick the best workload distribution ratio by performing an exhaustive
sweep of the THRESHOLD metric, as mentioned in Section III-A2.

0%

20%

40%

60%

80%

100%

S
M

X
 O

c
c
u

p
a
n

c
y Baseline-DP Offline-Search SPAWN

Figure 16: SMX occupancy.

SMX occupancy is defined as the ratio of the average active

warps per active cycle to the maximum number of warps

supported on all SMXs. A higher SMX occupancy could

potentially improve the GPU performance and provide more

latency tolerance towards child kernel launch overheads

and queuing latency as seen by correlating Figure 15 and

Figure 16. SPAWN achieves, on average, 1.96× higher SMX

occupancy over Baseline-DP, and is within 4% of the SMX

occupancy achieved by Offline-Search.

0%

20%

40%

60%

80%

100%

L
2
 C

a
c
h

e
 H

it
 R

a
te

Baseline-DP Offline-Search SPAWN

Figure 17: L2 cache hit rate.

We next evaluate the impact of SPAWN on cache per-

formance. Figure 17 shows the L2 cache hit rate for the

three evaluated schemes. Although SPAWN does not take

data reuse and data access pattern into account, the L2 hit

rate increases by around 10% compared to the Baseline-DP

execution. This is mainly due to two reasons: 1) L2 cache

contention is significant in Baseline-DP due to the high

number of concurrently-executing child kernels, and 2) child

kernels cannot execute immediately because of the launch

overheads and queuing latency. This delay in execution of

child kernels causes the loss in both temporal and spatial

locality between the parent and child kernels [43]. SPAWN

is able to increase locality by providing more computations

to parent (improving spatial locality) and allowing the parent

execution to last longer and overlap with the launched child

kernels (improving temporal locality).

25203 28171

0

10000

20000

N
u

m
b

e
r

o
f

la
u

n
c

h
e
d

c
h

il
d

 k
e
rn

e
ls

Baseline-DP Offline-Search SPAWN

Figure 18: Number of child kernels launched.

Figure 18 shows the number child kernels that are

launched during the benchmark’s execution for the three

different schemes. Note that the trend in the number of child

kernels launched in Offline-Search execution and SPAWN

are similar to each other. With SPAWN, the number of

child kernels launched significantly reduces (by 73% on

average). This reduction in the child kernel count helps in

reducing the launch overhead and queuing latency. In the

following subsection, we discuss the working of our SPAWN

mechanism in detail.

C. Dynamic Workload Distribution

0

0.2

0.4

0.6

0.8

1

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

U
ti

li
z
a
ti

o
n

C
o

n
c
u

rr
e
n

t
C

T
A

s

Time (~1000 cycles)

Concurrent Parent CTAs Concurrent Child CTAs Resource Utilization

(a) Baseline-DP.

0

0.2

0.4

0.6

0.8

1

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400 1600

U
ti

li
z
a
ti

o
n

C
o

n
c
u

rr
e
n

t
C

T
A

s

Time (~1000 cycles)

Concurrent Parent CTAs Concurrent Child CTAs Resource Utilization

(b) SPAWN.

Figure 19: Concurrent CTAs of BFS-graph500 over time.

To better understand the working of our SPAWN mech-

anism, we describe the child kernel launch patterns for

the Baseline-DP execution and our SPAWN mechanism.

Figure 19a and Figure 19b show the number of concurrent

CTAs in BFS-graph500 scheduled on the SMXs at any

given time during the course of execution for the Baseline-

DP and SPAWN, respectively. Initially, only parent CTAs

execute, following which the child CTAs start execution at

75k cycles. Since Baseline-DP of BFS-graph500 gives

significant work to child kernels, parent threads do not have

much edges to traverse. As a result, they finish execution

at 436k cycles, after which child kernels start dominating

the SMXs’ resources. However, there are two issues in the

Baseline-DP. First, the child kernels cannot start execution

immediately due to the launch overhead and queuing latency.

Consequently, the concurrency and resource utilization dra-

matically drop. Second, many child kernels are launched in

Baseline-DP, and they cannot execute concurrently because

of the limited number of HWQs. Since each child kernel in

BFS is lightweight (traversing only the neighboring nodes),

the resource utilization is low during the phase when only

child kernels execute (from cycle 436k to cycle 2,400k).

In SPAWN (Figure 19b), since more parent threads tra-

verse the edges in a loop, the parent CTAs execute for

longer duration and fewer child kernels are launched. As

a result, the parent CTA execution is now able to hide the

child kernels’ launch overhead efficiently. In addition, as

fewer child kernels are launched, it results in lower launch

overhead and reduced queuing latency. Therefore, it leads

to higher resource utilization, and allows the application

execution finish at 1600k cycles, unlike the Baseline-DP

execution which takes 2400k cycles.

Figure 20 depicts the cumulative child kernel launch

decisions that are taken over the entire execution for

BFS-graph500. We see that SPAWN is dynamically able

to make kernel launch decisions which are similar to the

decisions taken by Offline-Search, and achieve similar work-

load distributions. From the figure, we see that Baseline-DP

has considerable high child kernel launch rate compared

to SPAWN. Since launch overhead and queuing latency

dramatically increase when large number of child kernels are

intensively launched8, a reduction in child kernel launch rate

effectively reduces the overheads and improves performance.

0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000C
u

m
u

la
ti

v
e

 C
h

il
d

 K
e

rn
e

ls

L
a

u
n

c
h

e
s

 (
C

D
F

)

Time (~1000 cycles)

Baseline-DP Offline-Search SPAWN

6000

4000

2000 Saved cycles

Figure 20: CDF of child kernels launched over time

D. Comparison with an Alternate Strategy

We are not aware of any runtime scheme that tunes the

workload distribution (partitioning) between the parent and

child kernels in DP applications. Wang et al. [42] proposed a

mechanism called Dynamic Thread Block Launch (DTBL).

Instead of launching child kernels, they propose to launch

child CTAs and coalesce them with an existing kernel,

thereby removing the launch overheads associated with

launching kernels. However, this coalescing of CTA to an

existing kernel can happen only when the CTA is equal in

dimensions to the CTAs in the existing kernel and have the

same instruction sequence for execution. This reduces the

applicability of the scheme to a limited set of programs.

Also, the number of CTAs launched remains the same

in DTBL, which still incur significant queuing latency if

the concurrent CTA limitation is reached. We show results

from three representative applications in Figure 21. SA is

bottlenecked due to concurrent CTA limitation and SPAWN

outperforms DTBL by 1.8× and 1.4× in thaliana and

elegans [1], respectively. MM launches a lot of large child

kernels and suffers from both launch overhead and queuing

latency. SPAWN and DTBL perform similarly in this sce-

nario. SPAWN is able to reduce both the launch overheads

and queuing latency while DTBL largely eliminates only

the launch overhead. DTBL performs better than SPAWN

in SSSP because SSSP launches small child kernels and

the execution is bottlenecked by the launch overhead, which

DTBL is designed to eliminate.
8With an intensive child kernel launch rate, the launch overhead and

queuing latency gets exposed when there is lack of work in the GPU to
hide this increased latency.

0

2

4

6

8

thaliana elegans small large citation graph500

SA MM SSSP

S
p

e
e
d

u
p

SPAWN DTBL

Figure 21: Comparison with DTBL [42]. Normalized per-

formance to flat (non-DP) implementation.

VI. RELATED WORK

To the best of our knowledge, this is the first work that

dynamically tunes the workload distribution (partitioning)

ratio among parent and child kernels, to find the sweet spot

to minimize launch overhead and queuing latency while

maximizing parallelism.

Dynamic Parallelism: Prior work on dynamic parallelism

for GPUs has mainly dealt with the challenges of launch

overhead. Wang et al. [44] characterize the overheads in-

volved in dynamic parallel applications. They also compare

the control-flow and memory behavior of the dynamic par-

allel applications against their non-dynamic parallel coun-

terparts. Chen et al. [8] propose a compiler-based code

transformation that replaces the child kernel launches in the

parent threads with the child kernel code to reuse the already

running parent threads. Therefore, they avoid the large

runtime overheads involved in launching child kernels. Their

code transformation also load balances the parent threads

by reassigning the child tasks to different parent threads. In

this paper, we dynamically tune the workload distribution

by controlling the kernel launches, which effectively reduces

not only the number of child kernels, but also the number of

child CTAs. Consequently, we reduce both launch overheads

and queuing latencies. Also, these overhead and latency can

be hidden more effectively due to extended executions of

parent threads.

Work Distribution: There has been considerable amount

of research done on effectively mapping computations of

conventional applications to multi threads [11, 15, 16, 17,

31, 33, 37, 40, 46]. Yang et al. [46] propose a compiler

framework called CUDA-NP, that starts execution with a

high number of threads which are activated/deactivated by

control flow during runtime, essentially distributing the work

among the threads. Shen et al. [37] develop a mechanism that

can find an optimal partitioning of work between CPU and

GPU based on the workload characteristics using a two-step

quantitative model. Kim et al. [17] investigate a fine-grain

hardware worklist for GPGPUs which acts as the center

for all the warps to pick up work. This allows the work

distribution to load balance itself dynamically during the

source of execution.

VII. CONCLUSIONS

Although GPUs can be very effective in executing parallel

programs, many irregular applications (e.g. graph algorithms

with irregular data inputs) that have been ported to GPUs

execute inefficiently due to the workload imbalances across

its threads. Dynamic parallelism supported by OpenCL

and CUDA help in reducing this imbalance by allowing

GPU kernels to launch additional kernels on-demand with-

out involving the CPU. However, this approach entails

extra performance overheads for launching child kernels;

and a straightforward way of launching kernels can lead

to both resource underutilization and uneven work across

concurrently-executing kernels. Our proposed hardware-

based solution, SPAWN, improves the GPU performance by

hiding and reducing the performance overheads of child ker-

nel launches, and improving the load balance across different

kernels. Using our approach, programmers can port existing

irregular applications to GPUs without having to go through

extensive architecture-specific software optimizations that

balance the work across different kernels.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their feedback.

This research is supported in part by NSF grants #1205618,

#1213052, #1212962, #1302225, #1302557, #1313560,

#1320478, #1320531, #1409095, #1409723, #1439021,

#1439057, #1526750, #1629129 and #1629915. Adwait

Jog also acknowledges the start-up grant from College

of William and Mary. AMD, the AMD Arrow logo, and

combinations thereof are trademarks of Advanced Micro

Devices, Inc. Other product names used in this publication

are for identification purposes only and may be trademarks

of their respective companies.

REFERENCES

[1] “National center for biotechnology information,” http://www.
ncbi.nlm.nih.gov, online, 2016.

[2] V. Adhinarayanan et al., “Measuring and Modeling On-Chip
Interconnect Power on Real Hardware,” in IISWC, 2016.

[3] AMD, “AMD APP SDK OpenCL Optimization Guide,” 2013.
[4] AMD, “AMD APP SDK OpenCL User Guide,” 2013.
[5] A. Bakhoda et al., “Analyzing CUDA workloads using a

detailed GPU simulator,” in ISPASS, 2009.
[6] M. Burtscher et al., “A Quantitative Study of Irregular Pro-

grams on GPUs,” in IISWC, 2012.
[7] S. Che et al., “Pannotia: Understanding Irregular GPGPU

Graph Applications,” in IISWC, 2013.
[8] G. Chen and X. Shen, “Free Launch: Optimizing GPU Dy-

namic Kernel Launches Through Thread Reuse,” in MICRO,
2015.

[9] H. Cheng et al., “BitMapper: an efficient all-mapper based
on bit-vector computing,” in BMC Bioinformatics, 2015.

[10] G. Diamos et al., “Relational Algorithms for Multi-bulk-
synchronous Processors,” in PPoPP, 2013.

[11] W. Ding et al., “Optimizing Off-chip Accesses in Multicores,”
in PLDI, 2015.

[12] S. Hong et al., “Accelerating CUDA Graph Algorithms at
Maximum Warp,” in PPoPP, 2011.

[13] A. Jog et al., “Anatomy of GPU Memory System for Multi-
Application Execution,” in MEMSYS, 2015.

[14] A. Jog et al., “Exploiting Core Criticality for Enhanced
Performance in GPUs,” in SIGMETRICS, 2016.

[15] M. Kandemir et al., “Memory Row Reuse Distance and Its
Role in Optimizing Application Performance,” in SIGMET-
RICS, 2015.

[16] O. Kayiran et al., “uC-States: Fine-grained GPU Datapath
Power Management,” in PACT, 2016.

[17] J. Y. Kim and C. Batten, “Accelerating Irregular Algorithms
on GPGPUs Using Fine-Grain Hardware Worklists,” in MI-
CRO, 2014.

[18] A. Kuhl, “Thermodynamic States in Explosion Fields,” in
IDS, 2010.

[19] M. Kulkarni et al., “Optimistic Parallelism Requires Abstrac-
tions,” in PLDI, 2007.

[20] G. Liu et al., “FlexBFS: A Parallelism-aware Implementation
of Breadth-first Search on GPU,” in PPoPP, 2012.

[21] M. Mendez-Lojo et al., “A GPU Implementation of Inclusion-
based Points-to Analysis,” in PPoPP, 2012.

[22] D. Merrill et al., “Scalable GPU Graph Traversal,” in PPoPP,
2012.

[23] L. Nai et al., “GraphBIG: Understanding Graph Computing
in the Context of Industrial Solutions,” in SC, 2015.

[24] NVIDIA, “CUDA C/C++ SDK Code Samples.”
[25] NVIDIA, “JP Morgan Speeds Risk Calculations with

NVIDIA GPUs,” 2011.
[26] NVIDIA, “Dynamic Parallelism in CUDA,” 2012.
[27] NVIDIA, “Next Generation CUDA Compute Architecture:

Kepler GK110,” 2012.
[28] NVIDIA, “CUDA C Programming Guide,” 2015.
[29] NVIDIA, “Profiler User’s Guide,” 2015.
[30] S. I. Park et al., “Low-Cost, High-Speed Computer Vision

using NVIDIA’s CUDA Architecture,” in AIPR, 2008.
[31] A. Pattnaik et al., “Scheduling Techniques for GPU Archi-

tectures with Processing-In-Memory Capabilities,” in PACT,
2016.

[32] G. Pratx and L. Xing, “GPU Computing in Medical Physics:
A Review,” in Medical physics, 2011.

[33] S. Puthoor et al., “Implementing Directed Acyclic Graphs
with the Heterogeneous System Architecture,” in GPGPU,
2016.

[34] T. G. Rogers et al., “Cache-Conscious Wavefront Schedul-
ing,” in MICRO, 2012.

[35] P. Sanders and C. Schulz, “10th Dimacs Implementation
Challenge-Graph Partitioning and Graph Clustering,” 2012.

[36] I. Schmerken, “Wall Street Accelerates Options Analysis with
GPU Technology,” 2009.

[37] J. Shen et al., “Improving Performance by Matching Im-
balanced Workloads with Heterogeneous Platforms,” in ICS,
2014.

[38] S. S. Stone et al., “Accelerating advanced MRI reconstruc-
tions on GPUs,” J. Parallel Distributed Computing, 2008.

[39] X. Tang et al., “A Video Coding Benchmark Suite for
Evaluation of Processor Capability,” in SNPD, 2013.

[40] X. Tang et al., “Improving Bank-Level Parallelism for Irreg-
ular Applications,” in MICRO, 2016.

[41] Y. Ukidave et al., “NUPAR: A Benchmark Suite for Modern
GPU Architectures,” in ICPE, 2015.

[42] J. Wang et al., “Dynamic Thread Block Launch: A
Lightweight Execution Mechanism to Support Irregular Ap-
plications on GPUs,” in ISCA, 2015.

[43] J. Wang et al., “LaPerm: Locality Aware Scheduler for
Dynamic Parallelism on GPUs,” in ISCA, 2016.

[44] J. Wang and Y. Sudhakar, “Characterization and Analysis of
Dynamic Parallelism in Unstructured GPU Applications,” in
IISWC, 2014.

[45] H. Wu et al., “Compiler-Assisted Workload Consolidation For
Efficient Dynamic Parallelism on GPU”,” in IPDPS, 2016.

[46] Y. Yang and H. Zhou, “CUDA-NP: Realizing Nested Thread-
level Parallelism in GPGPU Applications,” in PPoPP, 2014.

